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Abstract: It is known that the solutions of pure classical 5D gravity with AdS5 asymp-

totics can describe strongly coupled large N dynamics in a universal sector of 4D conformal

gauge theories. We show that when the boundary metric is flat we can uniquely specify the

solution by the boundary stress tensor. We also show that in the Fefferman-Graham coordi-

nates all these solutions have an integer Taylor series expansion in the radial coordinate (i.e.

no log terms). Specifying an arbitrary stress tensor can lead to two types of pathologies, it

can either destroy the asymptotic AdS boundary condition or it can produce naked singu-

larities. We show that when solutions have no net angular momentum, all hydrodynamic

stress tensors preserve the asymptotic AdS boundary condition, though they may pro-

duce naked singularities. We construct solutions corresponding to arbitrary hydrodynamic

stress tensors in Fefferman-Graham coordinates using a derivative expansion. In contrast

to Eddington-Finkelstein coordinates here the constraint equations simplify and at each

order it is manifestly Lorentz covariant. The regularity analysis, becomes more elaborate,

but we can show that there is a unique hydrodynamic stress tensor which gives us solutions

free of naked singularities. In the process we write down explicit first order solutions in

both Fefferman-Graham and Eddington-Finkelstein coordinates for hydrodynamic stress

tensors with arbitrary η/s. Our solutions can describe arbitrary (slowly varying) velocity

configurations. We point out some field-theoretic implications of our general results.

Keywords: AdS-CFT Correspondence, Black Holes

ArXiv ePrint: 0810.4851

c© SISSA 2009 doi:10.1088/1126-6708/2009/03/067

mailto:rajesh@mri.ernet.in
mailto:ayan@mri.ernet.in
http://arxiv.org/abs/0810.4851
http://dx.doi.org/10.1088/1126-6708/2009/03/067


J
H
E
P
0
3
(
2
0
0
9
)
0
6
7

Contents

1 Introduction 1

2 How the boundary stress tensor fixes the solution 5

3 Mutual translation between Eddington-Finkelstein and

Fefferman-Graham coordinates 10

4 The derivative expansion in Fefferman-Graham coordinates 13

5 Getting rid of naked singularities 19

6 Discussion 21

A Proof of the power series solution for AdS5 asymptotics 23

B On fixing η/s by calculating curvature invariants 26

1 Introduction

In one of the major developments of late 20-th century physics, it has been shown that

many strongly coupled conformal 4D gauge theories at large N can be solved by using a

classical theory of gravity in ten dimensional spacetime with AdS5 ×X asymptotics [1–3].

X is a compact Sasaki-Einstein manifold and is related to the R symmetry of the theory

if the gauge theory is supersymmetric. In the classical theory of gravity the dynamics of

the metric will be described by Einstein’s equation sourced by a matter energy-momentum

tensor. The matter content of the theory of gravity will depend on the presumed dual gauge

theory. By the gauge/gravity duality any smooth solution of the equations of motion of

the classical theory of gravity is dual to an on-shell state in the conformal gauge theory

and encodes all the dynamics of the strongly coupled CFT state in a precise way [2, 9].

There is, however, always a sector of the theory where the dynamics is universal.

This is because any two-derivative theory of classical gravity which has AdS5 × X as a

solution always admits a consistent truncation to five dimensional Einstein’s equation with

a negative cosmological constant. For instance, we can set all scalar fields arising from

Kaluza Klein excitations on X and other sources to values that minimise the potential and

turn off all other matter fields.

Using AdS/CFT correspondence, now we can define the universal sector of all strongly

coupled (large N) conformal field theories with gravity duals as follows. This sector by def-

inition is the dual of pure 5-dimensional gravity with asymptotic AdS boundary condition.

– 1 –
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A state in this universal sector will be dual to a smooth solution of Einstein’s equation with

negative cosmological constant. At finite temperature also, this correspondence works, but

now the solutions of pure classical gravity are required to be free of naked singularities.1

In the first part of the paper we will argue that all solutions of pure classical gravity in

the universal sector with AdS5 asymptotics are uniquely determined by the boundary stress

tensor when the boundary metric is flat. The AdS5 asymptotics always requires a choice

of a boundary conformal structure which means that the induced metric on the surface at

infinity has a double pole in the radial coordinate and its residue can only be fixed upto

conformal transformations in the boundary coordinates. We say that the boundary metric

is flat when we choose the boundary conformal structure to be that of flat space. In the

gauge/gravity dictionary it translates into the dual CFT living in flat space. So our result

implies that in the universal sector the strongly coupled dynamics of the CFT state at

large N is specified once the conservation of the expectation value of the traceless stress

tensor is satisfied. From the field-theoretic point of view, this is a surprising simplification

of the dynamics.

To establish our claim we will use a theorem due to Fefferman and Graham [4], which

states that for any solution of Einstein’s equations with AdS asymptotics we can always

use a certain coordinate system within a finite distance from the boundary. Skenderis and

others [5, 9] have shown that this Fefferman-Graham coordinate system also captures the

physics of the CFT nicely, in particular, one can read off the expectation values of various

operators in the dual CFT state and also the Weyl anomaly directly from the metric in this

coordinate system. We will use some characteristics of the CFT to argue that when the

boundary metric is flat the metric in Fefferman-Graham coordinates should have a simple

integer Taylor series expansion in the radial coordinate. In fact our argument remains

valid whenever the Weyl anomaly of the dual CFT vanishes. The result has been proved in

generality for even dimensional AdS by Fefferman and Graham for any choice of boundary

metric. Since the Weyl anomaly for any CFT in odd number of dimensions vanish, this is a

special case of our result. We will use our power series ansatz for the metric in Fefferman-

Graham coordinates to show that the boundary stress tensor expectation value uniquely

fixes all the coefficients in the power series thus specifying the solution uniquely. Given the

CFT argument for the consistency of the power series ansatz we will be able to establish

that the metric is uniquely determined locally by the stress tensor.

It is clear, however, that any arbitrary traceless and conserved stress tensor will not

correspond to a CFT state. For AdS5 asymptotics we can say something more about gravity

solutions with such boundary stress tensors. Even in these cases, we will prove rigorously

that the power series solution with no log terms in the radial coordinate exists when the

boundary metric is flat. However in such gravity solutions either of two distinct pathologies

1This universal sector is different from what in the context of calculating the tachyon vacuum in string

field theory is also called the universal sector of 2D CFTs. In the latter case, it is defined to be the set of

states generated by the action of Virasoro generators on the vacuum [8]. However these states cannot be

uniquely specified just by the vev of stress tensor alone whereas all solutions of pure gravity can be uniquely

specified by the boundary stress tensor. So even for 2D CFTs our universal sector (which can be defined to

be the dual of pure 3D gravity with negative cosmological constant) is different from the other definition.
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can occur. For stress tensors with pathology of the first kind the reverse question of

finding the corresponding gravity solution will be ill-posed. For such stress tensors, the

formal power series solution of the metric in Fefferman-Graham coordinates will exist but

this power series will have zero radius of convergence in the radial coordinate. These

pathological stress tensors will be of the “asymptotic boundary condition destroying”, or,

in short, of “abcd” type. The other distinct set of pathological stress tensors will produce

naked singularities in the bulk.

We will argue that “abcd” type of stress tensors can be avoided by doing a perturbation

around a stationary late-time solution. We will further specialise to solutions with no net

asymptotic angular momentum and these solutions at late times will always settle down to

a static black brane.2 Multi blackbrane static solutions will not occur if there are no p-form

gauge fields as is the case in pure gravity. We will set up a perturbation expansion in the

Fefferman-Graham coordinates and show that all hydrodynamic stress tensors preserve the

asymptotic AdS boundary condition. This result, we will argue, should also have some

measure of validity for solutions carrying net angular momentum.

The perturbation expansion will be similar in spirit to that described in [10, 11], but

we will use Fefferman-Graham coordinates instead of Eddington-Finkelstein coordinates.

A single black brane preserves the SO(3) rotation symmetries and the R3,1 translation sym-

metries of the full SO(4, 2) isometries of AdS5. Among the isometries which are broken only

two can at most commute with each other and there is a four parameter family of choice

of these two isometries. Since they parametrise the mutually commuting set of broken

symmetries of the vacuum, which is the static black brane, we will call these “maximally

commuting Goldstone parameters”. We will choose them to be the scale transformation

with one scaling parameter and an arbitrary boost parametrised by the three spatial com-

ponents of a velocity. We can use them to generate a four parameter family of so-called

boosted black brane solutions. This choice is natural because the boundary stress tensor

of these boosted black brane solutions will be that of a homogenous perfect conformal fluid

parameterised by its velocity and temperature. The velocity of the fluid will be the same

velocity which parametrises the boost and the temperature will be the parameter of the

scale transformation if the unboosted black brane had temperature unity (in units where

the radius of AdS is set to unity). Now we will make the velocity and temperature arbitrary

functions of the field theory coordinates (i.e all coordinates except the radial one) and find

a correction to the metric which is first order in derivatives of the field theory coordinates.

The boundary stress tensor is also corrected as a result and Einstein’s equation implies it

is conserved and traceless. This perturbation being an order by order derivative expansion

should be thought of as the holographic dual of the usual low energy expansion (E/T) in

an effective field theory, T being the temperature. This is therefore a derivative expansion.

2This late time equilibriation, is of course expected only if the boundary stretches indefinitely in time,

i.e. if the solution is free of “abcd” type of pathology. One may see this explicitly by studying an example,

in which the boundary stress tensor is that of two fluids eternally moving past each other at different but

constant velocities and temperatures without equilibriating. Our results imply that a solution with AdS

asymptotics will exist even for such a boundary stress tensor. One of the authors (AM) is investigating this

solution to check if it indeed has “abcd” type of pathology.

– 3 –



J
H
E
P
0
3
(
2
0
0
9
)
0
6
7

The derivative expansion in the Fefferman-Graham has some advantages over the same

expansion in Eddington-Finkelstein coordinates [10, 11]. In the Fefferman Graham coordi-

nate system we can naturally view Einstein’s equation as evolution of boundary metric in

the radial direction. We will call those components of Einstein’s equation which contain

no more than one derivative of the radial coordinate as constraint equations. The first

advantage is that the constraint equations become trivial except for the conservation and

tracelessness of the boundary stress tensor if the dissipative (i.e the non-equilibrium) part

of the boundary stress tensor t(dis)µν is chosen to satisfy uµt(dis)µν = 0. The latter is called

the Landau gauge condition and may be imposed without any loss of generality as by

suitable redefinitions of the four velocity and temperature we can always make the stress

tensor satisfy this property.3 The second advantage over the perturbation in Eddington-

Finkelstein coordinates is that here the whole procedure will be Lorentz-covariant, whereas

in the Eddington-Finkelstein coordinates we had to decompose all terms into tensors, vec-

tors and scalars of SO(3). The third advantage is that we can construct the metric for

an arbitrary conformal hydrodynamic stress tensor. We can also read off the stress tensor

from our metric rather easily. Given this simplification of the constraints, in particular,

one can think of the Fefferman-Graham coordinate system as the “Coulomb gauge” in the

context of finding out metrics corresponding to arbitrary hydrodynamic stress tensors.

However, as we already know from the results of [10, 11], the solution corresponding

to a generic hydrodynamic stress tensor will contain a naked singularity. In the Fefferman-

Graham coordinates, however, we will find that the solution always has a singularity at the

location of the unperturbed horizon. To see if the singularity is just a coordinate singularity

or a real one we will translate our solution to Eddington-Finkelstein coordinates, because

in the Eddington-Finkelstein coordinate system a real singularity will be manifest in terms

of an actual blowup of the metric. To do this we will solve the equations of transformation

exactly to each order in the derivative expansion. We will show that whether the singularity

in the metric in Fefferman-Graham coordinates is real or fake, the translation to Eddington-

Finkelstein coordinates can be achieved at every order. The metric in the Eddington-

Finkelstein coordinates will make the singularity manifest and also easily reveal for which

choice of the coefficients in the stress tensor would the solution be free of naked singularities.

At every order in the derivative expansion, there will be a unique choice of coefficients of

the terms in the stress tensor for which the solution will be free of naked singularities.

Though we will establish the general results stated above, we will give explicit compu-

tations only upto first order in derivatives. In particular we will find the solution (exact

upto first order in derivatives) in Fefferman-Graham coordinates for a conformal hydrody-

namic stress tensor with arbitrary η/s. We will be able to find the solution for an arbitrary

velocity configuration of the boundary fluid. A special case of our result will be the solution

corresponding to the Bjorken flow found by Janik [13, 14]. With our method we will be

able to find the solutions for arbitrary slowly varying velocity configurations at each order

in the derivative expansion. It should also be kept in mind that the pathologies pointed

3The Landau gauge is simply a convenient set of definitions of the velocity and temperature variables

of the fluid and has nothing to do with gauge fixing of Einstein’s equations. The physical meaning of these

deifinitions is that uµ is the local four-velocity of energy transport.
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out in [13, 14, 17], associated with the methods of finding solutions in Fefferman-Graham

coordinates in [13, 14, 17], do not occur in our case because we never take a late time

scaling limit in which we are zooming closer to the horizon, where in fact the metric always

develops a coordinate singularity. In fact our method is as good and of equal reach as

the derivative expansion in Eddington-Finkelstein coordinates. It has several comparative

advantages which have been pointed out earlier, the comparative disadvantage being a

slightly more elaborate regularity analysis. However if we go beyond the hydrodynamic

sector to describe multi black brane solutions (if they exist), the Fefferman-Graham co-

ordinate system (being tied to the AdS asymptotics) can always be employed efficiently,

whereas it is not clear if the Eddington-Finkelstein coordinates will be equally useful.

The organisation of the paper is as follows. In section 2, we establish that the boundary

stress tensor uniquely specifies a solution of pure classical gravity with AdS asymptotics

when the boundary metric is flat. In section 3, we confirm our claims about the metric in

Fefferman-Graham coordinates by translating a known solution in Eddington-Finkelstein

coordinates which is exact upto first order in derivatives and free of naked singularities

(we will call this solution as the hydrodynamic solution and has been found in [10]). In

section 4, we will set up and elucidate the derivative expansion in the Fefferman-Graham

coordinates and establish that all hydrodynamic stress tensors preserve asymptotic AdS

boundary condition. In section 5, we will do the regularity analysis of our solutions. Finally

we will end with some discussion on the field-theoretic implications of our results.

2 How the boundary stress tensor fixes the solution

In this section we will restrict our attention mainly to a five dimensional asymptotically

AdS space with flat boundary metric, though we will indicate in the end that our results

may be sufficiently generalised. We will soon explain what is meant by the boundary metric

for asymptotically AdS spaces.

The Einstein-Hilbert action on 5-dim manifold M , with an appropriate counterterm

to have a well defined variational principle with Dirichlet boundary condition is

S =
1

16πGN

[

−
∫

M

d5x
√

G

(

R +
12

l2

)

−
∫

∂M

d4x
√

γ2K

]

(2.1)

where K is the extrinsic curvature and γ is the induced metric on the boundary. We are

using the convention of [5] in which the cosmological constant Λ of AdSd+1 is normalized

to be −d(d−1)
2l2

, hence for AdS5 we have Λ = − 6
l2

.

We want to solve Einstein’s equation

RMN − 1

2
RGMN =

6

l2
GMN (2.2)

subject to the condition that the solution is asymptotically AdS with a given conformal

structure at the boundary. Fefferman and Graham have shown that for such solutions we

can use a specific coordinate system called the Fefferman-Graham coordinate system near

the boundary. In this coordinate system, the metric takes the following form:

ds2 = GMNdxMdxN =
l2

ρ2

[

dρ2 + gµν(ρ, z)dzµdzν
]

(2.3)
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In the expression above the indices (M,N) run over all AdS coordinates and the indices

(µ, ν) run over the four field theory coordinates. The boundary metric g(0)µν is defined as

g(0)µν (z) = lim
ρ→0

gµν(z, ρ) (2.4)

Let this boundary metric have a conformal structure. Then it can be shown that any confor-

mal transformation of the boundary coordinates (z) can be lifted to a bulk diffeomorphism

of the Fefferman-Graham coordinates which preserves the form of the metric (2.3) [6, 7].

Under this bulk diffeomorphism, the boundary metric undergoes the same conformal trans-

formation. The simplest case for instance will be a scale transformation, z → λz, of the

boundary coordinates for which the corresponding bulk diffeomorphism will be ρ → λρ

(note that in the case of the bulk diffeomorphism, the field theory coordinates z do not

transform at all so that the boundary metric g(0)µν scales like g(0)µν(z) → λ−2g(0)µν(z)).

In the Fefferman-Graham coordinate system the various components of Einstein’s equa-

tion reads as [5]:4

1

2
g′′ − 3

2ρ
g′ − 1

2
g′g−1g′ +

1

4
Tr(g−1g′)g′ − Ric(g) − 1

2ρ
Tr(g−1g′)g = 0

∇µTr(g−1g′) −∇νg′µν = 0

Tr[g−1g′′] − 1

ρ
Tr[g−1g′] − 1

2
Tr[g−1g′g−1g′] = 0 (2.5)

Here “(′)” denotes a derivative with respect to ρ and ∇µ is the covariant derivative con-

structed from the metric gµν . Also in the above equations we have set our units such that

l, the radius of AdS is set to unity.

When the boundary metric is flat, we will argue that we can expand gµν(z, ρ) in a

simple integer power Taylor series of ρ with coefficients which are functions of z. Since we

have chosen the boundary metric to be flat, the leading term has to be ηµν . Our power

series ansatz will be:

gµν(z, ρ) = ηµν + Σ∞
n=2g(2n)µν(z)ρ2n (2.6)

We have written down only even powers of ρ in the above expansion because it follows

from a result due to Fefferman and Graham [4] that the power series (2.6) should be an

even function of ρ.5 The only even term which is absent is g(2)µν(z) which follows as an

easy consequence of the equations of motion (2.5).

It is not obvious that this power series ansatz will indeed provide us a solution, so we

will give an intuitive argument why this works. By AdS/CFT correspondence any solution

4The (minor) difference with the system of equations given in this reference will be that we will use

the original Fefferman-Graham radial coordinate ρ, whereas there the radial coordinate is chosen to be

the squareroot of ours. Also, the reference uses a definition of the Riemann tensor such that the scalar

curvature of AdS comes out to be positive.
5The existence of power series solution has been proved by Fefferman and Graham for all even dimen-

sional asymptotic AdS solutions and in case of odd dimensional asymptotic AdS solutions they also argued

that if the solution is a power series it should be even. The Fefferman Graham coordinates are however

unique only upto diffeomorphisms which are the lifts of the boundary conformal transformations into the

bulk. Although, it is not obvious, it can also be shown [4] that the evenness of the series (2.6) is independent

of the choice of any particular Fefferman-Graham coordinate system.
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of the bulk equations of motion would give us a state in the CFT, so the coefficients of the

Taylor series expansion in (2.6) should be functions of the expectation values of the local

operators in the dual CFT state. We will explicitly see below that all these coefficients are

just functions of the expectation value of the stress tensor in the CFT state. It is possible

to see the effect of space-time independent scale transformation on the CFT operators from

gµν(z, ρ). To do this we have to lift the scale transformation to a bulk diffeomorphism so

that the form of the metric (2.3) remains the same and the boundary metric also remains

flat. This lift, as mentioned before, is achieved by ρ → λρ. In the most general case it

has been shown [9] that the form of the ansatz (2.6) should be modified by terms like

ρn(log(ρ))m with non-negative n and m. To illustrate our argument we will consider just

two such possible terms:

g(n)(z)ρn + h(n)(z)ρnlog(ρ)

Under the bulk scaling transformation ρ → λρ,

g(n)(z) → λn−2g(n)(z) − log(λ)λn−2h(n)(z) (2.7)

We find the above transformation by checking the new coefficient of ρn in gµν after the

scale transformation. In a CFT any local operator simply scales like a power of λ, the

power being given by the conformal dimension of the operator. A log(λ) term is present

only when the Weyl anomaly doesn’t vanish. In flat space the Weyl anomaly vanishes and

since we have chosen the boundary metric to be flat the log term in (2.7) should not be

present as g(n)µν is a function of the expectation values of local operators. The absence of

the log(λ) term in a scale transformation applies not only to primary operators but also to

their descendents. So we can argue that terms like ρn(log(ρ))m should be absent and gµν

should be given by a simple power series of ρ.

However, our argument, of course, breaks down if the boundary stress tensor does

not correspond to any CFT state. In appendix A, we have given the general proof of the

existence of the power series solution for AdS5 asymptotics, so that even for such cases we

can state that the solution, is indeed, a power series. In fact we will explicitly see, that for

all hydrodynamic stress tensors, whether they do or do not correspond to CFT states, the

solutions are always power series.

Now we will substitute our ansatz (2.6) in the equations of motion (2.5) and solve

them order by order in powers of ρ. It is known from earlier work of Skenderis et.al. [5]

that the first term g(4)µν(z) is just the expectation value of the stress tensor. Briefly this

is how it comes about to be so. Upto this order the first equation (the tensor equation)

identically vanishes while the second and third equation of motion give:

Tr(g(4)) = 0

∂µg(4)µν = 0 (2.8)

Since the equations of motion by themselves cannot specify g(4) we need a data from the

CFT to specify it subject to the above constraints. Most naturally g(4) is the traceless

conserved stress tensor of the CFT. However we can also explicitly check this. An explicit

– 7 –
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calculation shows that g(4) is indeed the Balasubramanian-Kraus stress tensor [15] which

could be defined for any asymptotically AdS space. Hence we may write:

g(4)µν = tµν (2.9)

With our ansatz (2.6) it turns out that all the other coefficients g(2n) (n > 2) are fixed

uniquely by the equations of motion in terms of g(4) and its derivatives (or in other words the

stress tensor and its derivatives). We observe that the first and the third of the equations

of motion (2.5) (i.e. the tensor and the scalar equations) are sufficient to solve for g(n). All

the higher powers of the second of the equations of motion (2.5) (i.e the vector equation)

identically vanishes on imposing the constraints (2.8) i.e. by imposing the tracelessness and

the conservation of the stress tensor. It is not difficult to argue that this should be the

case because it can be shown [5] that the second (i.e the vector) equation of motion simply

implies the conservation of the Brown-York stress tensor (which when regulated becomes

the Balasubramanian-Kraus stress tensor) for an arbitrary constant ρ hypersurface. Now

the conservation of the Brown-York stress tensor at a given hypersurface is not independent

of the same requirement for another hypersurface, because in the ADM-like formulation of

the Einstein’s equations if we satisfy our constraints at a given hypersurface in which our

initial conditions are given the evolution (here in the radial coordinate ρ) automatically

satisfies the constraints. The conservation of the Brown-York stress tensor at the boundary

is already forced at leading order in ρ of the vector equation of motion through (2.8). Hence

we should expect that the vector equation should not impose any new constraints on the

stress tensor given that the tensor and scalar equations specify all the coefficients uniquely

and this is exactly what is borne out. In our proof in appendix A, we show how the tensor,

vector and scalar equations of motion turn out to be consistent with each other when we

employ the power series ansatz.

Below we give the a few of the the coefficients g(n)µν

g(6)µν = − 1

12
�tµν

g(8)µν =
1

2
t ρ
µ tρν − 1

24
ηµν

(

tαβtαβ

)

+
1

384
�

2tµν

g(10)µν = − 1

24

(

t α
µ �tαν + t α

ν �tαµ

)

+
1

180
ηµνtαβ

�tαβ +
1

360
tαβ∂µ∂νtαβ

− 1

120
tαβ(∂µ∂αtβν + ∂ν∂αtβµ) +

1

60
tαβ∂α∂βtµν − 1

180
∂µtαβ∂νtαβ

+
1

720
ηµν∂αtβγ∂αtβγ +

1

120
(∂µtαβ∂αtβν + ∂νtαβ∂αtβµ)

− 1

60
∂αtβµ∂βtαν − 1

23040
�

3tµν

g(12)µν =
1

6
t α
µ t β

α tβν − 1

72
tµν(tαβtαβ) + . . . (2.10)

Here, as before in (2.5) the boundary indices are raised and lowered by ηµν and � is

the Laplacian in flat space. Let us observe and explain certain simple features of the

results above. The first observation is that every term in the r.h.s. of the above equations

contain only even number of derivatives. This is so because the terms containing derivatives
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originate only from Ric(g) in the first of the equations of (2.5). The second observation is

that the terms independent of the derivatives appear only for g(4n). This is so because if we

omit Ric(g) in the first of the equations of (2.5), then the solution is a power series in ρ4n

as the first non-trivial term in the series is g(4). So for a solution where the stress tensor is

uniform (like in the case of a static black brane solution), g has an expansion containing

only ρ4n terms.

With our argument that the ansatz (2.6) should give us a consistent solution, it is

obvious that the stress tensor, which appears as g(4) in g uniquely specifies the solution

because all the higher coefficients are fixed uniquely in terms of g(4) with no new constraints

like (2.8) appearing for g(4). This completes the argument that when the boundary metric

is flat we should have a solution uniquely specified locally by the stress tensor alone. This

statement readily generalizes to other dimensions in the case of a flat boundary metric

and most likely also generalizes when the boundary metric is not flat. The general validity

could be argued for on the basis of the equations of motion (2.5) which are second order

(specifically in derivatives of ρ). Intuitively the boundary metric and the stress tensor

specifies all the initial data we need for a unique solution, however a concrete demonstration

of this would probably require methods beyond what we have employed here.

Our power series ansatz (2.6) should work even if the Einstein-Hilbert action with

negative cosmological constant receives higher derivative corrections provided the bound-

ary stress tensor corresponds to a state in the dual theory. Our argument as to why it

works is independent of the equation of motion and likewise also independent of say, the

value of t’hooft coupling of the dual theory. We have just used the fact that a conformal

transformation in the boundary should have an appropriate lift to a bulk diffeomorphism

consistent with the transformation of CFT operators. The transformation of the CFT

operators under conformal transformations, as well, is independent of the value of the cou-

pling. In fact one can readily check that exact static black hole solutions of Gauss-Bonnet

gravity which are asymptotically AdS (given in [19]) have power series expansion when

written in Fefferman-Graham coordinates.

The argument we have given above, however, cannot be reversed to argue that a

solution with asymptotic AdS5 boundary conditions exists for any arbitrary stress tensor.

The reason that we can’t reverse the argument is that the series (2.6) for gµν exists only

formally. The coefficients g(n) may not be well behaved at large n, for an arbitrary stress

tensor. We will give a simple example to show what can go wrong. For a specific choice of

stress tensor, we may find that g(n)µν = f(n)sµν plus other terms. Here sµν is a specific term

in the stress tensor. If, for instance, the series Σnf(n)ρn has zero radius of convergence,

gµν will not be a meaningful series of ρ as it will also have zero radius of convergence in ρ.

Such boundary stress tensors, for which gµν has zero radius of convergence in ρ, could be

appropriately called, “asymptotic boundary condition destroying” stress tensor or in short

“abcd” stress tensor. We will have more to say about such stress tensors in section 4.6

6Interestingly, Fefferman and Graham have shown in [4] that for even dimensional asymptotic AdS

solutions, gµν always has a finite radius of convergence in ρ. However their argument does not readily

generalize to the odd dimensional case.
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3 Mutual translation between Eddington-Finkelstein and

Fefferman-Graham coordinates

In the previous section, we have seen that, the Fefferman-Graham coordinate system is

good for finding a solution to Einstein’s equation with a negative cosmological constant

when the corresponding boundary stress tensor is specified. However the solutions are

usually found in other coordinate systems. For instance, the static black brane solution is

usually described in the Schwarzchild-like coordinate system and the hydrodynamic metric

of [10] has been found in the Eddington-Finkelstein coordinate system. It would be useful

to see how we can rewrite these solutions in the Fefferman-Graham coordinate system

asymptotically. We will demonstrate a novel technique towards this end for the boosted

black brane and the hydrodynamic metrics. In both cases we will see that we can achieve

a mutual translation between Eddington-Finkelstein coordinate system and Fefferman-

Graham coordinate system by using a power series ansatz similar to (2.6) and we can solve

this ansatz algebraically order by order. We expect this method to work for all solutions

in which the boundary metric is flat, or more generally when the Weyl anomaly vanishes.

The general procedure is as follows. In the Eddington-Finkelstein coordinates (xµ, r)

the metric takes the form:

ds2 = −2uµ(x)dxµdr + Gµν(x, r)dxµdxν (3.1)

Here we are using ingoing Eddington-Finkelstein coordinate system, so that uµ is a four-

velocity (hence uµuνηµν = −1) such that it is directed forward in time. We will express the

general structure of coordinate transformation from the Eddington-Finkelstein coordinates

(xµ, r) to Fefferman-Graham coordinates (zµ, ρ) as below:

dρ = pµ(r, x)dxµ + q(r, x)dr (3.2)

dzµ = mµ
ν(r, x)dxν + nµ(r, x)dr (3.3)

We substitute the above in the Fefferman-Graham form of the metric (2.3) to get:

ds2 =
1

ρ2

[(

pµpν + gηξ(ρ, z)mη
µmξ

ν

)

dxµdxν + 2
(

pµq + gξσ(ρ, z)mξ
µnσ

)

dxµdr

+
(

q2 + gµν(ρ, z)nµnν
)

dr2
]

(3.4)

Comparing the above with the Eddington-Finkelstein form of the metric (3.1), we get the

following set of equations:

(q(x, r))2 + gµν(ρ, z)nµ(x, r)nν(x, r) = 0 (3.5)

2pµ(x, r)q(x, r)+gαβ(ρ, z)(mα
µ(x, r)nβ(x, r)+mβ

µ(x, r)nα(x, r)) = −2uµ(x)(ρ(x, r))2

pµ(x, r)pν(x, r) + gαβ(ρ, z)mα
µ(x, r)mβ

ν(x, r) = Gµν(x, r)(ρ(x, r))2

So we have a scalar, a vector and a tensor equation and three unknowns to solve for. The

unknowns are a scalar ρ(x, r), a vector zµ(x, r) and the tensor gµν(z, ρ) which appear in the

Fefferman-Graham metric (2.3). It is clear from the definitions (3.2) of q, etc. that they are
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just various partial derivates of (ρ, z), for instance q = ∂rρ, etc. We will make the following

general ansatz to solve the above equations. The ansatz for ρ and zµ will be that they will

be an integer power series of the inverse of the Eddington-Finkelstein radial coordinate r.

ρ =
1

r
+

ρ2(x)

r2
+

ρ3(x)

r3
+ . . .

zµ = xµ +
zµ
1 (x)

r
+

zµ
2 (x)

r2
+ . . . (3.6)

To solve the equations of transformation (3.5), the above should be supplemented with the

ansatz (2.6) for the gµν(z, ρ) in the Fefferman Graham metric. The expressions for the

partial derivatives like q, etc. then turn out to be as below:

q = ∂rρ = − 1

r2
− 2ρ2

r3
− 3ρ3

r4
− . . .

pµ = ∂µρ =
∂µρ2

r2
+

∂µρ3

r3
+ . . .

nµ = ∂rz
µ = −zµ

1

r2
− 2zµ

2

r3
− . . .

mµ
ν = ∂νz

µ = δµ
ν +

∂νz
µ
1

r
+

∂νzµ
2

r2
+ . . . . (3.7)

One thing to be kept in mind is that when we substitute our ansatz (3.6) to solve the equa-

tions of transformation (3.5), gµν(ρ, z) should be re-expressed as functions of (x,r). Below,

we just give the first three terms which appear after it is rewritten as functions of (x,r).

gµν = ηµν +
tµν(x)

r4
+

(4ρ2tµν + (z1.∂)tµν)(x)

r5
+ . . . . (3.8)

We now consider a boosted black brane metric in Eddington-Finkelstein coordinate

ds2 = −2uµdxµdr − r2f(br)uµuνdxµdxν + r2Pµνdxµdxν (3.9)

where

f(r) = 1 − 1

r4
(3.10)

u0 =
1

√

1 − β2
i

(3.11)

ui =
βi

√

1 − β2
i

(3.12)

and the temperature is T = 1
πb

and the three-velocity βi are all constants, and

Pµν = uµuν + ηµν (3.13)

is the projector onto the spatial hypersurface orthogonal to the four velocity uµ. This metric

can be obtained by applying a boost parameterised by the three-velocity βi and a scaling

by b to the usual AdS black hole with unit temperature where the time coordinate t is itself
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a Killing vector. In this case actually the exact transformation from Eddington-Finkelstein

to Fefferman-Graham coordinate system can be exactly worked out easily and it is given by:

ρ =

√
2b

√

b2r2 +
√

b4r4 − 1

zµ = xµ + uµbk(br),

k(y) =
1

4

(

log

(

y + 1

y − 1

)

− 2arctan(y) + π

)

(3.14)

The solution for gµν in the Fefferman-Graham metric (2.3) for the boosted black brane is

given by:

gµν(z, ρ) =

(

1 +
ρ4

4b4

)

ηµν +
4ρ4

4b4 + ρ4
uµuν (3.15)

The boundary stress tensor could be easily read off by looking at the coefficient of ρ4 after

Taylor expanding the r.h.s. of the above expression. The stress tensor turns out to be that

of an ideal conformal fluid (like that of a gas of photons)

t0µν = g(4)µν
=

1

4b4
[4uµuν + ηµν ] (3.16)

where the temperature is T = 1
πb

. The horizon in the Fefferman-Graham coordinates is at

ρ =
√

2b and at the horizon gµν given by (3.15) is not invertible as gµν(ρ =
√

2b, z) = 2Pµν .

So clearly the Fefferman-Graham coordinate system has a coordinate singularity at the

horizon. Also it is easy to check from (3.14) that the change of coordinates also becomes

singular at the horizon.

Now we turn to the hydrodynamic metric found in [10] which is a solution to Einstein’s

equation upto first order in the derivative expansion and has a regular horizon. Here the

“maximally commuting Goldstone parameters” of the boosted black brane solution, the

velocities βi and the temperature T are functions of the field theory coordinates (x). The

Gµν in the Eddington-Finkelstein form of the metric (3.1) is:

Gµν = r2Pµν +

(

−r2 +
1

b4r2

)

uµuν +2r2bF (br)σµν −r

(

(u.∂)uµuν − 2

3
uµuν(∂.u)

)

(3.17)

with

F (x) =
1

4

(

log

(

(x + 1)2(x2 + 1)

x4

)

− 2arctan(x) + π

)

(3.18)

In this case we will solve the set of equation (3.5) by putting in our anstaz (3.6). We solve

order by order for each power n in r−n. At each order we have to solve algebraic equations

and remarkably the equations can be consistently solved at each order. It is important to

throw away all the terms which have two x-derivatives or more and solve the series for ρ

and zµ given in (3.6) and the series for gµν given in (2.6) only upto first derivative order.

This is justified because the hydrodynamic metric above in Eddington-Finkelstein form is a

solution to Einstein’s equation only upto first order in x-derivatives and hence it can have

a Fefferman-Graham expansion near the boundary only upto first derivative order. The
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results of the non-vanishing terms in the expansion for ρ and zµ in (3.6) upto r−9 order

are given below:

ρ2 =
1

3
(∂.u), ρ5 =

1

8b4
, ρ6 =

13(∂.u)

120b4
, ρ9 =

7

128b8

zµ
1 =uµ, zµ

2 =
1

3
uµ(∂.u), zµ

5 =
uµ

5b4
,

zµ
6 =

9uµ(∂.u) + 7(u.∂)uµ

60b4
, zµ

9 =
uµ

9b8
(3.19)

We can easily observe some patterns in the results above. Firstly the terms without any

derivatives only appear as coefficients of r−4n−1. These are precisely the terms that appear

in the expansion for the case of the boosted black brane as given in (3.14). This is because

the original black brane solution in Fefferman-Graham coordinates as we know from (3.15)

is a series with “gaps” of four (which means only the fourth next term is non-zero). So the

solution of (3.5) should provide a series for ρ and zµ in gaps of four as well. Secondly, it also

turns out that the terms which have first derivative pieces occur for ρ2, ρ6, z
µ
2 , zµ

6 , etc. again

in gaps of four. We obtain the coefficients of the series for gµν given in (2.6) which was part

of our ansatz. The second non-zero term in the series gives us the boudary stress tensor:

tµν = g(4)µν =
ηµν + 4uµuν

4b4
− 1

2b3
σµν (3.20)

where

σµν = P α
µ P β

ν ∂(αuβ) −
1

3
Pµν∂αuα (3.21)

This is stress tensor for a relativistic conformal fluid satisfying Navier-Stokes’ equation and

with η/s = 1/4π. The next non vanishing term in the series for gµν is:

g(8)µν = −uµuν

4b8
− σµν

8b7
(3.22)

We can check that the expression for g(8) is given by the general results of the the previous

section when we substitute the dissipative stress tensor (3.20) in (2.10).

In this section we have worked out the case for a specific “hydrodynamic metric”

given in [10]. This metric has no naked singularities and this corresponds to the choice of

η/s = 1/4π in the dissipative stress tensor (3.21). However we will see in section 5 that

our ansatz (3.6) for translation between the Eddington-Finkelstein and Fefferman-Graham

coordinates will work even when the above is not the case, i.e the metric contains naked

singularities. In what follows we will reverse the translation. That is, we will work out

the Fefferman-Graham form of the metric exactly upto first order in derivatives first and

then find out the Eddington-Finkelstein form of the metric also exactly upto first order

in derivatives. We will see that the power series ansatz (3.6) is consistent for any metric

corresponding to an arbitrary hydrodynamic stress tensor.

4 The derivative expansion in Fefferman-Graham coordinates

We have already seen that the Fefferman-Graham form of the metric is the ideal one to

use if we are asking given a boundary stress tensor what the corresponding solution of

– 13 –



J
H
E
P
0
3
(
2
0
0
9
)
0
6
7

Einstein’s equations of motion should be. The most general hydrodynamic stress tensor

for a conformal fluid (in the Landau gauge) upto first order in derivatives is as below:

tµν(z) =
ηµν + 4uµ(z)uν(z)

4b(z)4
− γ

2b(z)3
σµν(z) (4.1)

with σµν(z) given by (3.21), b related to the temperature through b = 1/πT and γ an

arbitrary constant. However here, unlike in the case of the specific solution (without naked

singularities) we considered in the previous section, η/s = γ/4π and hence is arbitrary. We

now ask what would be the corresponding solution for this arbitrary case.

Before we get into this specific case, we will show that we can get some insights into the

reverse question from some generally known facts and our previous results given in section

2. We have seen, briefly, at the end of section 2 that the reverse question is ill posed for

an “abcd” (asymptotic boundary condition destroying) stress tensor, for which the formal

power series (2.6) for gµν has zero radius of convergence in ρ. One must devise a strategy

in which such stress tensors do not appear at all. To this end we may always exploit a

general property of solutions of Einstein’s equation that in the long run the solution always

becomes stationary. For the moment let us further restrict to those solutions which have

no (ADM) angular momentum or any other (ADM) conserved charges (like the R-charge).

These will, in the long run, settle down to the known boosted black brane solution (3.9).

Static multi blackbrane like solutions do not appear if we turn off p-form gauge fields, so if

more than one black brane are present they eventually will collapse to form a single black

brane. A good strategy to recover all solutions will be to perturb around the late-time

static black brane and build up all solutions in a systematic derivative expansion. Since

any solution would eventually become static (or equilibriate) this strategy should always

work at sufficiently late times.

Since the approach to equilibrium can be naturally described by hydrodynamics, one

can intuitively expect that the late time behaviour of the solutions will correspond to a hy-

drodynamic description in terms of the boundary theory if the equilibrium can be described

in terms of a perfect fluid. The boundary stress tensor of a boosted black brane indeed

corresponds to that of a perfect conformal fluid like that of photons in pure QED. Our

expectation is indeed borne out by the fact that all solutions in the derivative expansion

correspond to a traceless conserved hydrodynamic boundary stress tensor, but with arbi-

trary number of derivatives. We will see that in the derivative expansion at each order the

solutions always have finite radius of convergence away from the boundary, so we can con-

clude that all hydrodynamic stress tensors are asymptotic boundary condition preserving.

The fact that all hydrodynamic stress tensors preserve the asymptotic AdS boundary

condition should have a certain measure of validity even for solutions with net angular

momentum. In fact in [18], it has been shown that a large class of rotating black holes

in AdS can be described by perfect fluid hydrodynamics. However, we do not know how

general the result is. The argument in the previous paragraph shows that for any solution

if the hydrodynamic description holds for the stationary solution to which a given solution

eventually equilibrates, it should hold for sufficiently late times as well. So certainly a large

class of solutions even in the sector with net angular momentum which can be constructed
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by perturbing around certain stationary solutions will have a hydrodynamic description at

least at late times.7

To build up a solution corresponding to an arbitrary hydrodynamic stress tensor, we

will work in the Fefferman-Graham coordinate system as we have said before and we will

construct the solution exactly order by order in the derivative expansion. To develop the

derivative expansion we follow the same method which the authors of [10] followed but now

in the Fefferman-Graham coordinate system. In fact, based on the results of section 2, we

will see that their method simplifies in these coordinates. We take the boosted black brane

solution with gµν of the form of (3.15), but now the “maximally commuting Goldstone

parameters” (uµ, b) are arbitrary functions of z. We will call this the zeroth order metric

g0 which is no more a solution to Einstein’s equation, so we need to correct this with g1

which will now depend on the first derivatives of the “maximally commuting Goldstone pa-

rameters” (uµ, b). This correction g1 can be found substituting g = g0 +g1 in our equations

of motion (2.5) and retaining only terms which have no more than one derivative of z.

The first of the equations of motion (2.5), i.e the tensor equation gives us a source free

linear equation for g1 which is second order in the derivatives of ρ and has no z-derivatives.

1

2
g
′′

1 − 3

2

g
′

1

ρ
− 1

2
g
′

1g
−1
0 g

′

0 −
1

2
g
′

0g
−1
0 g

′

1 +
1

2
g
′

0g
−1
0 g1g

−1
0 g

′

0 (4.2)

+
1

2

(

Tr
(

g−1
0 g

′

1

)

− Tr
(

g−1
0 g1g

−1
0 g

′

0

))

(

g
′

0

2
− g0

ρ

)

+
1

2
Tr
(

g−1
0 g

′

0

)

(

g
′

1

2
− g1

ρ

)

= 0

At the first order in derivative expansion, the only term which can provide a source term

is Ric(g) since it has no derivatives of ρ. However Ric(g) contains at least two derivatives

of z, so at this order the source vanishes.

At the first order the second of the equations of motion, which is a vector equation

gives us the following:

∇0µTr(g−1
0 g′0) −∇ν

0g
′

0µν = 0 (4.3)

where ∇0 is the covariant derivative constructed from g0.The major simplification which

occurs in the Fefferman-Graham coordinates is the general observation in section 2, that

this gives us nothing but the conservation of the stress tensor. It may be checked that if we

choose to solve this vector fluctuation equation order by order in powers of ρ, like we did

in section 2, at the leading order we would get ∂µtoµν = 0, where t0µν is the perfect fluid

stress tensor (3.16) and all the coefficients of the higher powers of ρ will vanish identically

once the leading order condition is imposed. This simplification will happen at every order

in the derivative expansion, which means that if tn−1 is the stress tensor upto n-1 th order

in the derivative expansion, at the n-th order the second equation will simply imply the

conservation of tn−1.

At the first order in the derivative expansion the third equation of motion vanishes

identically. It is easy to see why this will happen. Again we go back to the general observa-

tions of section 2. If tµν = t0µν +t1µν with t0µν given by the perfect fluid stress tensor (3.16)

7As we have mentioned in a previous footnote, a non-trivial check of this strategy will be to construct

a solution for a boundary stress tensor for which there is no late time equilibriation and see how it is

connected to the “abcd” type of pathology.
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and t1µν is the first order correction to the stress tensor satisfying the tracelessness and the

Landau gauge uµt1µν = 0 conditions, then the correction to the coefficients of the power

series expansion g(n)µν (some of which are listed in (2.10)) is simply proportional to t1µν .

The first order derivatives of t0µν doesn’t appear because, as we have observed the general

expressions for g(n) must contain even number of derivatives of t0µν . It follows that the

correction to the zeroth order metric, g1, is proportional to t1. It also follows from the the

tracelessness of t1 and the Landau gauge condition that the third equation vanishes identi-

cally as all traces appearing in the equation vanish. We will soon see that, this simplifying

feature also, remarkably generalises to all orders in the derivative expansion.

In the Fefferman-Graham coordinates the first order correction to the metric g1 is,

therefore, proportional to the first order correction to the stress tensor which is proportional

to σµν and therefore g1 takes the form of γ
′

bσµνf(ρ), where γ
′

is an arbitrary constant.

Substituting this in the tensor equation (4.2), we find that f(ρ) satisfies the following

differential equation:

f
′′ − f

′ (12b4 − ρ4)(4b4 + 3ρ4)

ρ(16b8 − ρ8)
+ f

128ρ6b4

(4b4 + ρ4)(16b8 − ρ8)
= 0 (4.4)

We already know that the solution is a power series in ρ4, so we change our variable ρ to

x = ρ4. The equation now reads

f
′′ − f

′ 8b4

16b8 − x2
+ f

8b4

(4b4 + x)(16b8 − x2)
= 0 (4.5)

The solution of this differential equation which vanishes at the boundary (after resubsti-

tuting x with ρ4)8 is:
(

1 +
ρ4

4b4

)

log

(

1 − ρ4

4b4

1 + ρ4

4b4

)

(4.6)

The metric in Fefferman-Graham coordinates upto first order then is:

ds2 =
dρ2 + gµν(ρ, z)dzµdzν

ρ2
(4.7)

gµν(ρ, z) =

(

1 +
ρ4

4b4

)

ηµν +
4ρ4

4b4 + ρ4
uµuν + γ

′

bσµν

(

1 +
ρ4

4b4

)

log

(

1 − ρ4

4b4

1 + ρ4

4b4

)

To read off the stress tensor upto first order, we simply need the ρ4 term in the Taylor

expansion of gµν . We get:

tµν =
ηµν + 4uµuν

4b4
− γ

′

2b3
σµν (4.8)

Comparing with (4.1) we get that we must set γ
′

= γ in the first order metric (4.8) to get

the desired solution corresponding to the boundary stress tensor.

One very interesting feature of our solution at the first order can be found out by

putting γ
′

= γ = 0. This implies that our zeroth order solution itself, now with veloc-

ities and temperatures satisfying the relativistic Euler equation, is an exact solution of

8The other solution is f2 = 1 + ρ4

4b4
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Einstein’s equations upto first order. Such is never the case in Eddington-Finkelstein co-

ordinate system where as we will see we need to correct the zeroth order solution even for

a dissipation-less stress tensor so that the solution is exact upto first order. We do not

understand any deep reason for this feature of our solution.

Now we can proceed to examine the higher orders in the derivative expansion. Though

we will postpone explicit solutions beyond the first order for a future publication, here

we will show that it is trivial to satisfy the vector and scalar constraints at each order

in perturbation theory. The tensor equation takes the following form at each order in

perturbation theory:

D1gnµν + D2(gnµρu
ρuν + gnνρu

ρuµ) + D3(gnρσηρσ)ηµν + D4(gnρσηρσ)uµuν

+D5(gnρσuρuσ)ηµν + D6(gnρσuρuσ)uµuν = snµν(z, ρ) (4.9)

where D1, D2, etc. are linear differential operators involving derivatives in the radial

coordinate only and snµν(z, ρ) is the source term which is a (nonlinear) function of the

corrections to the metric upto n-1 th order in the derivative expansion. The left hand side

of the above equation is in fact the same as in (4.2) with g1 replaced by the n-th order

correction to the metric gn, but now source terms are present on the right hand side. Also

the differential operator D1 is the same as the operator which acts on f in (4.4) at every

order in the derivative expansion. We dropped the operators D2, D3, etc. at the first

order, i.e. for g1, because as we saw the general results of section 2 (equations in (2.10) for

instance) forced it to be proportional to be stress tensor and hence be traceless and vanish

when contracted with the four velocity. However, from the second order in the derivative

expansion onwards, the general results of section 2 do not imply this to be true for the

correction to the metric and in fact the source terms which appear on the right hand side of

the equation indeed do not have this property. All the other operators except D1, however,

involve no more than one derivative in the radial coordinate.

We have to choose a particular solution to the above equation. We can always choose

the particular solution to be such that it vanishes at the boundary like ρ6 so that it doesn’t

contribute to the stress tensor (as the coefficient of its ρ4 term vanishes). One can explicitly

check this, however, more efficiently we can prove it as follows. The source term for the

n-th order correction clearly is determined by various terms of the stress tensor upto n-1

th order, so it follows from the general results of section 2 that the particular solution can

be chosen to be independent of tnµν , which is the n-th order correction to the stress tensor.

In that case the ρ4 term should be absent. For instance, based on the results like those

in (2.10), we can write down the Taylor series expansion in the radial coordinate for the

particular solution for g2 as below.

g2µν = −ρ6

12
�t0µν + ρ8

[

1

2
t ρ
1µt1ρν − 1

24
ηµν(tρσ

1 t1ρσ)

]

+ρ10

[

− 1

24
(t α

0µ �t0αν + t α
0ν �t0αµ)

+
1

180
ηµνtαβ

0 �t0αβ +
1

360
tαβ
0 ∂µ∂νt0αβ − 1

120
tαβ
0 (∂µ∂αt0βν + ∂ν∂αt0βµ)
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+
1

60
tαβ
0 ∂α∂βt0µν − 1

180
∂µtαβ

0 ∂νt0αβ +
1

720
ηµν∂αtβγ

0 ∂αt0βγ

+
1

120
(∂µtαβ

0 ∂αt0βν + ∂νt
αβ
0 ∂αt0βµ) − 1

60
∂αt β

0µ∂βtα0ν

]

+ . . . . (4.10)

More generally, the particular solution for gn is uniquely determined once we specify that

it vanishes at the boundary like −(1/12)ρ6�tn−2. Then it follows that it is independent of

tn and doesn’t contribute to the stress tensor at the n th order.

Now the particular solution at every order in the derivative expansion should by itself

satisfy the scalar constraint. Let us see it explicitly for the particular solution for g2. The

particular solution chosen to vanish at the boundary like −(1/12)ρ6�t0 has an expansion

of the above form (42). So by this choice, the coefficients of the Taylor expansion (now

fixed by the source) will automatically agree with the general formulae, like those in (2.10).

These general formulae are automatically consistent with the scalar constraint. The scalar

constraint also will be a linear differential equation for gn with a source term. The source

term again is a (nonlinear) function of the corrections to the metric upto n-1 th order in

the derivative expansion. The particular solution by itself will satisfy this equation. So the

homogenous solution of the tensor equation for gn must also be a homogenous solution of

the scalar constraint.

The homogenous solution of the tensor equation for gn which will be consistent with

the scalar constraint is simply −2b4f(ρ)tnµν , with f(ρ) being given by (4.6) and tnµν being

an arbitrarily chosen correction to the hydrodynamic stress tensor involving n derivatives of

the field theory coordinates z. However tnµν must be traceless and also satisfy the Landau

gauge condition. Let us illustrate again by explicitly doing the Taylor series expansion of

the homogenous solution to g2 which is −2b4f(ρ)tnµν . The Taylor expansion is as below:

g2µν = t2µν

(

ρ4 +
ρ8

4b4
+

ρ12

48b8
+ . . .

)

(4.11)

Using the tracelessness and Landau gauge condition for t2, one can check from the general

formulae like those in (2.10) that this is just the part of the metric determined by t2 at

the second order. Hence this should be the only homogenous solution that is consistent

with the scalar constraint. Similarly at each order one can see that the part of the solution

for gn which contains tn is proportional to tn and since the particular solution by choice

contains all other terms, the homogenous solution should be always proportional to tn.

Then the tensor equation fixes the radial part of the homogeneous solution so that it

should be −2b4f(ρ)tnµν .

The vector constraint, at the n-th order in the derivative expansion, as we have argued

before simply implies the conservation of the stress tensor upto n-1 th order.

To summarize, these are the features of the derivative expansion in the Fefferman

Graham coordinates.

• At every order in the derivative expansion, the tensor equation for gn is a linear

differential equation of the form of (4.9) involving derivatives in the radial coordinate

only. The operators D1, D2, etc are the same at every order, while the source term

sn is a nonlinear function of the various corrections to the metric upto n-1 th order.

– 18 –



J
H
E
P
0
3
(
2
0
0
9
)
0
6
7

• The particular solution to the tensor equation for gn can be chosen to vanish at the

boundary like −(1/12)ρ6�tn−2. With this choice the particular solution automati-

cally satisfies the scalar constraint.

• The homogenous solution to the tensor equation which is consistent with the scalar

constraint is −2b4f(ρ)tnµν at very order, with f being given by (4.6) and tnµν being

an arbitrary n th order correction to the stress tensor which satisfy the tracelessness

and the Landau gauge condition conditions.

• The vector constraint at the n-th order just implies the conservation of n-1 th order

stress tensor.

• We can keep manifest Lorentz covariance at each order in the derivative expansion.

• We can construct a solution corresponding to an arbitrary stress tensor because

the homogenous solution of the tensor equation for gn at the n-th order is simply

proportional to an arbitrarily chosen n-th order correction to the stress tensor. At

every order in the derivative expansion for any choice of the hydrodynamic stress

tensor, the solution has finite radius of convergence away from the boundary, so all

hydrodynamic stress tensors preserve the asymptotic AdS boundary condition.

5 Getting rid of naked singularities

The comparative advantage of solving Einstein’s equation of pure gravity in Fefferman Gra-

ham coordinates in the derivative expansion over doing the same in Eddington-Finkelstein

coordinate system is that the constraints simplify dramatically and also we do not need to

split the terms into tensors, vectors and scalars of SO(3), thus preserving manifest Lorentz

covariance. The comparative disadvantage of the Fefferman-Graham coordinate system

is that the regularity analysis is not straightforward. At the first order in the derivative

expansion, the metric in Fefferman-Graham coordinates (4.8) has a singularity at ρ =
√

2b.

This is the location of the horizon at the zeroth order and the zeroth order metric itself is

not invertible here.

The first order perturbation has a log piece which also blows up here. This singularity

could be just a coordinate singularity in which case it could be removed by going to a

different coordinate system as it happened for the boosted black brane, or it could be a

real singularity. If it is a real singularity, it is naked because it coincides with the original

horizon at late time. At late times the solution approaches a boosted black brane but since

the horizon coincides with a real singularity, no infalling observer can continue life after

reaching the horizon.

To analyse the singularity in the Fefferman-Graham coordinates we will simply trans-

late the metric to Eddington-Finkelstein coordinates (r, x). It will be of course suffice to

change our coordinates near ρ =
√

2b, however, for the sake of completeness and better

general understanding we will do the change of coordinates exactly upto first order in the

derivative expansion. The Eddington-Finkelstein metric which we will get as a result of

this translation will also be an exact solution of Einstein’s equation upto first order in x-

derivatives. We now return to the equations (3.5) in section 3 which gives the translation

between the two coordinate systems. We still treat the Fefferman-Graham coordinates
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(ρ(x, r), zµ(x, r)) as unknowns, but the third unknown is now the Gµν(x, r) which appears

in the Eddington-Finkelstein metric (3.1). The zeroth order solutions to these three are

known and are given in (3.9) and (3.14). To find the corrected solutions due to change in

the Fefferman-Graham metric at first order it is straightforward to perturb these equations

and solve them exactly at first order. The complete solutions to the three unknowns exact

upto first order are:

ρ =

√
2b

√

b2r2 +
√

b4r4 − 1

(

1 + bk(br)
∂.u

3

)

zµ = xµ + uµbk(br) + uµ ∂.u

3
b2kA(br) + (u.∂)uµb2kB(br) (5.1)

Gµν = r2Pµν +

(

−r2+
1

b4r2

)

uµuν + 2r2bF (br)σµν − r

(

(u.∂)(uµuν) −
2

3
uµuν(∂.u)

)

+
(γ − 1)b

4
r2log(1 − 1

b4r4
)σµν

where,

k(x) =
1

4

(

log

(

x + 1

x − 1

)

− 2arctan(x) + π

)

F (x) =
1

4

(

log

(

(x + 1)2(x2 + 1)

x4

)

− 2arctan(x) + π

)

(5.2)

and kA(x), kB(x) satisfy the following differential equations

dkA

dx
= − x2

x4 − 1

(

k(x) +
x√

x4 − 1

)

dkB

dx
=

1

x
√

x4 − 1
− k(x)x2

x4 − 1
(5.3)

with the boundary condition that they vanish at x = ∞. One may easily check that if we

do the Taylor series expansion of ρ, zµ in 1/r, we can reproduce the results (3.19) of section

3 in which we have solved these equations using a power series ansatz.

The crucial point, as realized by authors of [10] is that in the Eddington-Finkelstein

coordinates if there is a blow-up in Gµν(x, r) it should be a real singularity. For a general

conformal fluid at first order with η/s = γ/4π, the corresponding solution in Eddington-

Finkelstein coordinates has Gµν(x, r) given by (5.1). Except for the log term which appears

in the last line, all other terms are well behaved for r > 0 and the log term blows up at

r = 1/b, the location of the unperturbed black brane horizon. Only when γ = 1, the

coefficient of the log term vanishes and so the naked singularity at r = 1/b is absent. For

this value of γ we have in fact reproduced the Gµν of the Eddington-Finkelstein metric

given by the authors of [10].

We learn the following general facts. The translation to Eddington-Finkelstein coor-

dinates exists for an arbitrary solution in the Fefferman-Graham coordinates irrespective

of whether there is any naked singularity or not. Also the Fefferman-Graham coordinates

have a power series expansion in terms of the inverse of the radial Eddington-Finkelstein
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coordinates for all cases. For all cases, the change of coordinates also become singular at the

location of the original horizon in the Eddington-Finkelstein coordinates which is r = 1/b.

We can continue the regularity analysis to higher orders in the derivative expansion

by solving the equations (3.5) for translating the solution from the Fefferman-Graham

coordinates to Eddington-Finkelstein coordinates order by order in the derivative expansion

as well. In this way at each order we will be able to determine what values the coefficients

in the terms of the hydrodynamic stress tensor should have so that a naked singularity is

avoided. It would be interesting to see if we can understand the values of these coefficients of

the hydrodynamic stress tensor, more directly in terms of the geometry of the unperturbed

boosted black brane horizon.

We will conclude this section by emphasizing certain points.

• We can think of translating to outgoing Eddington-Finkelstein coordinates also as

an attempt to remove the singularity and then as expected the situation will be

time-reversed. We will now need γ = −1 for regularity. In the boundary theory, all

fluid dynamical solutions will then be time-reversed and our gravity solutions will be

perturbed white-hole solutions exact upto first order in the derivative expansion.

• We could have attempted to fix γ by studying regularity at the horizon by computing

curvature invariants (like RµνρσRµνρσ). However, we do not know, if for these “hy-

drodynamic” space-times, checking that a finite number of curvature invariants do

not blow up at the horizon will suffice to demonstrate regularity. So the best strategy

is to translate to a coordinate system where the solution is explicitly regular upto

first order in the derivative expansion and this is what we have done here. For the

sake of completeness, however, we have studied a few curvature invariants and have

found that the leading singularity of RµνρσRµνρσ at second derivative order vanishes

for the right choices of γ which are 1 and -1, the details of which are presented in

appendix B.

• The derivative expansion in Fefferman-Graham coordinates is equivalent to the same

in Eddington-Finkelstein coordinates to all orders in the derivative expansion even

when the solutions do not have a regular horizon. This is so because the equa-

tions (3.5) for translating Fefferman-Graham coordinates to Eddington-Finkelstein

coordinates can always be solved order by order in the derivative expansion as well.

In fact, this is natural, because any asymptotic AdS solution can be written in the

Fefferman Graham coordinates.

6 Discussion

We will point out some implications of our results for dynamics in the universal sector of

CFT. Our first result is that a solution of pure classical gravity is uniquely specified by

the stress tensor. This implies that the dynamics of all states in the universal sector of the

dual CFT at strong coupling and large N is completely determined by the conservation of

the traceless stress tensor. The implication for dynamics on the CFT side is even more

surprising than the result for classical theory of gravity itself. It is surprising because to
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characterise a state uniquely we would typically need the expectation values of infinite

number of operators. However, it is not hard to give an example of a special sector of

states with this property in a 2D CFT. These special states are spanned by Ln|V AC >

(n > 2)and are created by descendendants of the identity operator (Ln),with n > 2, acting

on the vacuum. Each such state is uniquely character by the L0 eigenvalue n, hence by the

expectation value of the stress tensor T(z). Moreover each state Ln|V AC > (n > 2) being

an eigenvector of the Hamiltonian, the sector spanned by these states is closed under time

evolution. It would be interesting to find such examples of class of states in CFTs in higher

dimensions where the expectation value of the stress tensor uniquely identifies each member

and moreover is closed under time evolution. The real question, however is, whether we can

give an intrinsic microscopic description of the universal sector of CFTs with gravity duals.

If we can achieve this, we will be able to understand better how the vev of the stress tensor

and its conservation alone determines the dynamics in the universal sector completely.

Our second set of results are (a) all hydrodynamic stress tensors are free of the “abcd”

type of pathology, which means that they preserve the asymptotic AdS boundary condition

and (b) there is a unique hydrodynamic stress tensor for which there is no naked singularity.

This means that the late time equilibriation in the boundary CFT can be determined by

a unique and universal hydrodynamic stress tensor. The coefficients of the terms should

be set to values which avoids formation of naked singularities in the bulk. It would be

interesting to find out an intrinsic microscopic definition for the higher order coefficients

of the hydrodynamic stress tensor, in terms of say, multi point correlations of the stress

tensor. The first order coefficient, namely the viscosity has indeed such a definition in terms

of two-point correlation function of the stress tensor and the validity of the definition can

be verified by the AdS/CFT correspondence as well. So we may hope that a pure gravity

analysis should suffice to arrive at similar definitions for the higher order coefficients in the

hydrodynamic stress tensor.

We would like to mention that while we were updating our work, it was a great pleasure

to find out that our method has been generalised in [20] to compute the stress tensor in

the universal hydrodynamic sector of strongly coupled large N dual theories of various

p-branes, which are in most cases non-conformal. We would like to take this opportunity

to mention that since our method keeps the asymptotic boundary condition manifest, it

could be given a preference whenever implementing the asymptotic boundary condition in

Eddington-Finkelstein coordinates becomes laborious or complicated.

Finally, we would like to point out, that it will be interesting to find a physical under-

standing of the “abcd” type of pathology. Our results in the hydrodynamic sector gives

support for claiming that whenever we have late-time equilibriation in the boundary stress

tensor, this pathogy is absent. It will be interesting to find a real example with such a

pathology and trace its physical origin.
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A Proof of the power series solution for AdS5 asymptotics

Here we will prove that any asymptotically AdS5 solution of Einstein’s equation with a

negative cosmological constant, in the Fefferman-Graham coordinates, has a solution for

gµν which is a power series in the radial coordinate when the boundary metric is flat.

Though not explicitly mentioned in most of what follows, it should be kept in mind that

here we are specifically investigating five-dimensional solutions with a flat boundary metric.

At the end, we will mention if our proof can be generalised to other cases.

To simplify the proof we first rearrange the tensor and the scalar components of

Einstein’s equation (2.5) while keeping the vector components of Einstein’s equation un-

changed. The old scalar equation is added with an appropriate linear combination of the

trace of the old tensor equation so that now it does not contain any term which has second

derivative of gµν with respect to the radial coordinate ρ. Since the vector equation also does

not contain any term with second derivative of gµν with respect to the radial coordinate

we can now think of the vector and scalar components as a set of five constraint equations.

We also change the tensor components of Einstein’s equation by appropriately replacing

Tr(g−1g′) using the new scalar equation. We do this so that now the tensor equation by

itself is sufficient to determine all the ρn coefficients of gµν . The old tensor equation had

the feature that to determine g(8)µν , the coefficient of ρ8 in gµν , we had to use the scalar

equation as well, but now this can be fully determined using the tensor equation alone. So

our equations now are as below.

1

2
g′′ − 3

2ρ
g′ − 1

2
g′g−1g′ +

1

4
Tr(g−1g′)g′ − Ric(g)

+g

[

1

6
R(g) +

1

24
Tr(g−1g′g−1g′) − 1

24
(Tr(g−1g′))2

]

= 0 (A.1)

∇µTr(g−1g′) −∇νg′µν = 0 (A.2)

R(g) +
3

ρ
Tr(g−1g′) +

1

4
Tr(g−1g′g−1g′) − 1

4
[Tr(g−1g′)]2 = 0 (A.3)

It is not difficult to see that we can use a power series ansatz to solve the tensor equation as

at the n-th order. At the n-th order the only terms which can contain g(n)µν
or Tr(g(n))ηµν

are g′′µν , g′µν and Tr(g−1g′)gµν . Now since the tensor equation contains no term with

Tr(g−1g′)gµν , at the n-th order,for n > 4, the tensor equation gives us n(n − 4)g(n)µν/2 =
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f(n)µν(tρσ), where f(n)µν(tρσ) is a polynomial in tρσ and its various derivatives with respect

to the boundary coordinates only. Hence, for n > 4, we can always solve g(n)µν using the

tensor equation alone.

We have now got to show that the power series we have so obtained as a solution to

the tensor equation is consistent with the vector and scalar constraints. We will do this by

the method of induction iterating over the various coefficients of ρn in gµν , order by order

in n. We will first establish the following fact that the ρ-derivative of the vector and scalar

constraints vanish when the tensor equation along with the vector and scalar constraints are

satisfied. This just articulates the intuition that once the initial data consisting of gµν and

g′µν satisfy the vector and scalar constraints on hypersurface with a fixed value of the radial

coordinate ρ, the dynamical evolution in ρ should be such that the constraints should be

automatically satisfied for any other hypersurface. To show this we will need the following:

Γµ
νσ

′ =
1

2
gµα(∇νg′ασ + ∇σg′αν −∇αg′νσ)

Rµ
ναβ

′
=

1

2
gµγ [∇α∇νg

′
γβ −∇α∇γg′νβ −∇β∇νg

′
γα + ∇β∇γg′να] (A.4)

One can use the tensor (A.1) and scalar (A.3) equations to write

Rµ
ν − 1

2
δµ
ν R =

1

2
gµαg′′αν − 3

2ρ
gµαg′αν − 1

2
gµαg′αβgβγg′γν +

1

4
Tr(g−1g′)gµαg′αν (A.5)

+
5

4ρ
Tr(g−1g′)δµ

ν − 1

4
δµ
ν

[

Tr(g−1g′′) − Tr(g−1g′g−1g′) +
1

2
(Tr(g−1g′))2

]

Now when all the equations (A.1), (A.2) and (A.3) are satisfied, the ρ-derivative of the

vector constraint can also be written as:

(∇µTr(g−1g′)−∇νg′µν)′ = ∂µ

[

Tr

(

g−1g′′ − 3

4
g−1g′g−1g′

)

+
1

4
(Tr(g−1g′))2

]

−∇ν

(

gανg′′µα − gαβg′βγgγνg′αµ+
1

2
gναg′αµTr(g−1g′)

)

(A.6)

Now comparing the right hand sides of (A.5) and (A.6) using all the equations of motion

again, we see that

(∇µTr(g−1g′) −∇νg′µν)′ = ∇ν

(

Rν
µ − 1

2
δν
µR

)

(A.7)

So the Bianchi identity implies that the ρ-derivative of the vector equation should vanish

when all the equations of motion are satisfied. We will now get to the scalar equation.

When the vector equation of motion (A.2) is satisfied we get

Rµν
′ = −1

2
Rαµ(gαβg′βν) +

1

2
Rγ

ναµ(gαβg′βγ) +
1

2
∇µ∇νTr(g−1g′) − 1

2
∇2g′µν (A.8)

This implies that when the vector equation of motion is satisfied, we have:

R′ = −gµνg′νσgσαRµα (A.9)
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On the other hand the vanishing of the ρ-derivative of the scalar constraint (A.3) ought to

give us:

R′ = −1

2
Tr(g−1g′g−1g′′) +

3

2ρ
Tr(g−1g′g−1g′) (A.10)

+
1

2
Tr(g−1g′g−1g′g−1g′) − 1

4
Tr(g−1g′)Tr(g−1g′g−1g′) +

1

2ρ

[

Tr(g−1g′)
]2

Now using the tensor and scalar equations of motion, we can see that the right hand sides

of (A.9) and (A.10) are the same, or in other words the ρ-derivative of the scalar constraint

indeed vanishes when all the equations of motion are satisfied. So we have established that

the ρ-derivatives of the all the five constraints vanish when all the equations of motion are

satisfied, or to state compactly

(A.1), (A.2), (A.3) ⇒ (A.2)′, (A.3)′ (A.11)

To prove that the power series solution of the tensor equation is consistent with the con-

straints, we will use the above at ρ = 0. To obtain a condition for g(n)µν (the coefficient of

ρn in gµν) from the tensor equation we need to differentiate it n-2 times with respect to ρ

and then set ρ = 0. Similarly to obtain a condition for g(n)µν from the vector and scalar con-

straints we need to differentiate each of them n-1 times with respect to ρ and then set ρ = 0.

The vector and scalar constraints imply that g(2)µν should vanish while the tensor

equation identically vanishes at this order. The tensor equation for g(4)µν which we have

appropriately renamed tµν , also identically vanishes while the vector constraint gives us the

conservation equation ∂µtµν = 0 and the scalar constraint gives the tracelessness condition

Tr(t) = 0. We can start our induction from here, since the three equations are all consistent

with each other upto this order

Let us suppose, by the induction hypothesis that the solution for g(n−1)µν obtained

from the tensor equation is consistent with the vector and scalar constraints. We now

denote the m-th ρ-derivative as m
′

. So, by induction hypothesis, the three equations

(n−3)′(A.1)(ρ = 0), (n−2)′(A.2)(ρ = 0) and (n−2)′(A.3)(ρ = 0) are consistent with each

other. Now we iterate by determining g(n)µν from the tensor equation, or in other words

we solve

(n − 2)′(A.1)(ρ = 0) (A.12)

But by induction hypothesis we can assume (n−2)′(A.3)(ρ = 0) and (n−2)′(A.2)(ρ = 0) are

consistent with the tensor equation. Now our result (A.11) for a general fixed ρ hypersurface

implies that

(n − 2)′(A.1), (n − 2)′(A.2), (n − 2)′(A.3) ⇒ (n − 1)′(A.2), (n − 1)′(A.3) (A.13)

We can apply the above at ρ = 0,9 to iterate and say that if the solution for g(n−1)µν

from the tensor equation is consistent with the constraints so would the solution for g(n)µν

9At ρ = 0 the statement (A.13) has a non-trivial content strictly for n > 2, because of the slight

technicality that what we really need to use to find a condition for g(n)µν is that we need to differentiate

(ρ(A.3)) not really (A.3) n-1 times. So at ρ = 0, this result is trivial for the scalar constraint when n = 2

and we do not need to use the result (A.13), but since the first step of induction starts from n = 4, it is

safe to use this in the iteration procedure.
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from the tensor equation be. This completes the proof by induction that the power series

solution of the tensor equation is consistent with the constraints.

Let us see if our proof can be generalised to other cases, in particularly for all dimen-

sions if the boundary metric is flat. The only change in the equation of motion happens to

be the coeffiecient of g′µν in the tensor equation. Let us, for example, take the case when

the number of boundary coordinates is six. We can check by hand that all g(n)µν vanish

for all n such that 0 < n < 6 and g(6)µν cannot be determined from the tensor equation for

an exactly similar reason as for g(4)µν when the number of boundary coordinates was four,

namely the tensor equation identically vanishes. The vector and scalar constraints imply

conservation and tracelessness of g(6)µν implying that it should be identified with the stress

tensor (and indeed it has been shown in [5] that this agrees with with the Balasubramanian-

Krauss stress tensor). We can begin our induction, from here as before and hence our proof

generalises. So, the general problem in applying the induction is to show that the equa-

tions of motion are consistent with the power series ansatz at g(d)µν . We have not been

able to prove it generally but we have checked it upto d = 6. The same problem appears

when we try to apply induction to prove the validity of the power series solution when

the number of boundary coordinates is odd, but the boundary metric is arbitrary. Before

we apply induction, we need to prove that the power series works at g(d)µν , (in fact this

is harder to show, because when the boundary metric is not flat g(n)µν ’s do not vanish

for 0 < n < d). However, Fefferman and Graham have proved the validity of the power

series solution by a different method for an arbitrary boundary metric when the number

of boundary coordinates is odd.

B On fixing η/s by calculating curvature invariants

We have already done the regularity analysis of our first order solution in Fefferman Graham

coordinates by translating to Eddington-Finkelstein coordinates where the regularity or

irregularity becomes manifest. However, one may ask if the regularity analysis can be done

also by calculating some curvature invariants. We will see that indeed at the first order,

this analysis can also be done by calculating an appropriate curvature invariant, but we

will argue that there may not be a finite number of curvature invariants which can be

reliably used to fix all the coefficients in the hydrodynamic stress tensor at higher orders

in the derivative expansion.

Before we do that, we want to point out that though the metric in Fefferman-Graham

coordinates and in Eddington-Finkelstein coordinates could be made coordinate equivalent

upto any given order in the derivative expansion for an arbitrary hydrodynamic stress

tensor, the curvature invariants calculated from the two metrics will typically never be the

same! Let us examine why this should happen at the first order itself. Any typical curvature

invariant, like the Ricci scalar R itself, will show a divergence only when we expand it to

second order in derivatives of the boundary coordinates. In this case, this should be so,

because the metric in either coordinate system is a solution of the equations of motion upto

first order in derivatives of boundary coordinates. However, the second order piece in R

calculated from the metric in either coordinate system will not be the same, because the
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two metrics are related by a coordinate transformation only upto first order in derivatives.

In fact we will explicitly demonstrate that R itself can be used to fix the value of 4πη/s

in the Eddington-Finkelstein metric at first order but not in the Fefferman-Graham metric

at first order. So the procedures of using curvature invariants to fix the coefficients in the

hydrodynamic stress tensor in the two coordinate systems are indeed very different!

Another crucial aspect should be kept in mind because this also features in comparing

curvature invariants calculated from the metrics in the two coordinate systems. Funda-

mentally, solving Einstein’s equations in either of the two coordinate systems involves a

trade-off between manifest regularity and manifest asymptotic boundary condition. The

solution in Eddington-Finkelstein coordinate system at the zeroth order and also at the

first order for the right value of 4πη/s are manifestly regular so any curvature invariant cal-

culated at the horizon will be regular to all orders as well. However, the solution preserves

the asymptotic AdS boundary condition only upto first order in derivatives as it can be

translated to Fefferman-Graham coordinate system only upto that order. The solution in

Fefferman-Graham coordinate system at first order, of course preserves boundary condition

to all orders, but even for the right choices of 4πη/s it is not regular to all orders. In other

words, for the right choice of 4πη/s all order divergences should vanish when we calculate

curvature invariants from the metric in Eddington-Finkelstein coordinate system, but in

case of the solution in Fefferman-Graham coordinates at first order, at most the leading

divergence at the second order vanishes for the right choice of 4πη/s. In fact, for certain

curvature invariants even that do not happen. Of course, eventually if we add a right

second order correction to the Fefferman-Graham metric, all divergences in the curvature

invariants at the second order should vanish, but still divergences at higher orders will

remain and so on. We will illustrate the first order case with examples below.

To compute curvature invariants it is useful to first choose a velocity and tempera-

ture profile. As mentioned before, the vector constraint in Einstein’s equations of motion

demand that the velocity-temperature profile should be a solution of the relativistic Eu-

ler equation
∂µb

b
= (u.∂)uµ − uµ

∂.u

3
(B.1)

We call our boundary coordinates (t, x, y, z) and we select the following static velocity

profile which is a relativistic version of laminar flow

uµ =
1

√

1 − a2y2
(1, ay, 0, 0) (B.2)

where a is a constant of dimension 1/length. The advantages of using this velocity profile

are twofold, namely,

• The relativistic Euler equation gives us that temperature, hence b, should be a con-

stant.

• It is easy to employ the derivative expansion by using the following trick. We note

that the only non-trivial derivatives of the boudary coordinates are the y-derivatives.

Any y-derivative of the velocities will bring in an extra a which is unpaired with a y
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so that it picks up the right dimension. Hence to do the derivative expansion we may

first set y = p/a and simply do a Taylor expansion in a about a = 0. The correct

dimensionless parameter of the derivative expansion, of course will be ab.

We can use the above velocity-temperature profile in the first order solution in any coor-

dinate system. Though away from the boundary the boundary coordinates (or, in other

words, the field-theoretic coordinates) in a given coordinate system will mix with all the

coordinates in another coordinate system, at the boundary they will always align with

other. This is, how solutions in two different coordinate systems come to share the same

boundary stress tensor and also the same conservation equation, which in this case, is the

relativistic Euler equation.

If we use the above velocity-temperature profile to calculate R in the Eddington Finkel-

stein coordinate system we will find that

R = −20 + a2 1

8(1−a2y2)2b4r6

[

(γ−1)(b2r2(9+3γ−2π)−16b5r5+2πb6r6))

(br − 1)(1 + br + b2r2 + b3r3)
(B.3)

+(γ−1)(γ+1−8b3r3)b2r2Log

(

1 − 1

b4r4

)

+O(1)

]

+O(a3)

At the zeroth order in a, R should of couser be -20 and at order a, R should of course vanish

because our metric is a solution of equations of motion upto first order. At order a2, we

indeed expect some divergence at the horizon, which is at r = 1/b, because the metric is

explicitly not regular there unless γ = 4πη/s = 1. We see that when 4πη/s = γ = 1 all

divergences go away. This feature replicates also at higher orders in a.10 On the other

hand, if we calculate R from the Fefferman-Graham metric at first order, we get

R = −20 + a2

[

128b10ρ8(12b4γ2 + 4b2ρ2 + 3γ2ρ4)

(1 − a2y2)2(4b4 − ρ4)2(4b4 + ρ4)3
(B.4)

+
16b6ρ4γ2

(1 − a2y2)2(4b4 + ρ4)2
Log

(

4b4 − ρ4

4b4 + ρ4

)]

+ O(a3)

At order a2, we see that there is a leading inverse power two divergence for any value of

γ and a subleading log divergence except when γ = 0. So this is useless to figure out the

right value of γ. Of course this will certainly be useful to fix certain coefficients of the

hydrodynamic stress tensor at second order, because these divergences should go away for

any right second order correction to the Fefferman-Graham metric.

It turns out, however, that, RµνρσRµνρσ can be used to fix the value of γ in the

Fefferman-Graham metric. We get

RµνρσRµνρσ =
4(1280b16 + 1280b12ρ4 + 2784b8ρ8 + 80b4ρ12 + 5ρ16)

(4b4 + ρ4)4
(B.5)

−a2

[

2(1 − γ2)b6

(1−a2y2)2(ρ−
√

2b)4
+ O

(

1

(ρ−
√

2b)2

)

+O
(

Log(
√

2b−ρ)
)

+O(1)

]

10We would like to thank Sayantani Bhattacharya for confirming that this indeed happens for arbitrary

velocity and temperature profiles.
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We see that the zeroth order piece is always finite and independent of γ and at order a

(for some reason we do not understand) the scalar vanishes. However, at order a2, we find

that when γ is 1 or -1 the leading divergence at ρ =
√

2b goes away, though, the subleading

divergences remain and as before, they should disappear when we add any right second

order contribution to the Fefferman-Graham metric. We are also not sure, if by computing

RµνρσRµνρσ itself we can fix the values of all the coefficients in the hydrodynamic stress

tensor at second order. To fix all the coefficients of the second order hydrodynamic stress

tensor, one may have to look for another appropriate curvature invariant.

It is certainly, worth exploring, if the “hydrodynamic” Fefferman-Graham solutions are

“‘special” enough so that computing a finite number of curvature invariants will suffice to

determine regularity, hence in fixing all the coefficients in the hydrodynamic stress tensor

to all orders. We will leave this for a future work. Nevertheless, our procedure of fixing

the coefficients in the hydrodynamic stress tensor by translating to Eddington-Finkelstein

coordinate system works for all orders in the derivative expansion.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200]

[SPIRES].

[2] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [SPIRES].

[3] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

[4] C. Fefferman and C. Robin Graham, Conformal Invariants, in Elie Cartan et les
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